
Supplement to Statistical Design of Reverse Dye Microarrays

Dobbin, K.∗, Shih, J. and Simon, R.

National Cancer Institute
Biometric Research Branch

6130 Executive Blvd., MSC 7434
Bethesda, MD 20892

USA

Email: dobbinke@mail.nih.gov
Phone: 301-451-6244

∗To whom correspondence should be addressed.

1



Supplement: Statistical Design of Reverse Dye Microarrays 2

1 Discussion of Paired Samples ANOVA Elements

Gg Represents the average expression level for the gene g in the population.

GAga Represents variation in the spots for a particular gene on different arrays.

GDgd Represents the gene-specific dye effect.

GVgv Represents differences in average expression for a particular gene between the two varieties
(normal and cancerous).

GPgp Represents variation in gene expression of this particular gene in normal tissue between
different individuals.

GV Pgvp Represents variation in the effect of the cancer on the expression of this particular gene
in different individuals.

For an individual spot on a particular array, this model postulates that the observed background-
adjusted, normalized log-intensity is a result of additive effects of the amount of RNA in the sample,
the size and quality of the spot, the dye effects, and random error. Included in the random error
are inhomogeneities in the RNA sample and technical issues in the measurement, extraction, and
reverse-transcription and labelling reactions.1

We assume that the cancer does not have exactly the same affect on the expression level of a
gene for all individuals in the population. The GV Pgvp terms represent this variation (on average,
for this individual or subgroup of individuals). In order to estimate terms of interest, it is necessary
to assume this effect is normal with some variance τ2

g , or to introduce a set of constraint equations
which these terms satisfy. We generally favor the former approach. The error term is assumed
normally distributed with mean zero and variance σ2

g .

For each gene, an ANOVA model is fit. The term of interest is the contrast between the
expression level for “cancer” and for “normal,” represented by GVg1 − GVg0. The purpose of the
GP and GV P terms are not to estimate the effects, which are generally not of interest, but to
account for participant effects when there are repeated samples for several participants. Including
the GV P term in the ANOVA estimation may reduce the residual error variance by eliminating
the contribution from τ2

g , but on the other hand will also result in a loss of degrees of freedom for
error. More importantly, including GV P in the model will produce less efficient estimates of the
GVg1 −GVg0 term of interest (see Further Discussion section below).

The analysis of variance table for these data is given in Table A of the supplement. We present
three ANVOA tables because there are often very few or no degrees of freedom for estimating the

1Our model assumes a single RNA extraction for each sample.
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sample-specific effects GP and GV P . In the left column is the ANOVA when GP and GV P are
included in the model; the middle column excludes GV P ; and the right column excludes both GP
and GV P . We derive results for all three analyses. In fact, a single design appears optimal for all
cases. We think it a reasonable plan to lump the GV P effects in with error (middle column) in
order to improve power and efficiency for the term of interest.

When k = 0, the GP effects are no longer estimable and should be removed from the model
(rightmost column of supplement Table A). Because the GP effects cancel out of the within-array
contrasts on which the GV estimator is based, no assumption about the distribution of these effects
is implied when the term is removed from the model.

2 Results for Paired Samples

Consider first the case with GV P effects in the model. In Appendix A, the minimum variance
linear unbiased estimator of GVg1 − GVg0 under the usual model constraints is derived, and the
variance of the estimator is shown to be

var(ĜV g1 − ĜV g0) =
2σ2

g

m
.

For fixed m, this function is a constant in k.

Now we turn to the case without GV P effects in the model. In Appendix B, Lagrange multipliers
are used to derive the minimum variance linear unbiased estimator of GVg1−GVg0 under the usual
model constraints, and the variance of the estimator is shown to be

var(ĜV g1 − ĜV g0) =
(τ2

g + σ2
g)(τ

2
g + 2σ2

g)
(m− k)τ2

g + mσ2
g

.

For a fixed number of arrays, m, the k that minimizes the variance is k = 0. This equation is
also valid for k = 0, in which case, GP terms are not estimated explicitly. Note that if k > 0 and
neither GV P nor GP is in the model, then the variance will be greater than given by this equation,
so that again k = 0 is optimal. When k = 0, we don’t need to estimate τ2

g explicitly for inference,
but only the sum τ2

g + 2σ2
g , which is the residual variance of the log-ratios.

3 Sample Size for Optimal Paired Samples Design (no reference)

Setting k = 0 (and removing GV P and GP from the model) results in

var
(
ĜV g1 − ĜV g0

)
=

τ2
g + 2σ2

g

m
.
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Consider the null hypothesis H0 : GVg1 = GVg0. Let α be the size of the test, i.e., the probability
of a type I error; and 1 − β be the desired power of the test against the specific alternative
|GVg1 −GVg0| ≥ δ. Then the sample size formula is:

m0 =
[
zα/2 + zβ

δ

]2 (
τ2
g + 2σ2

g

)
.

Here zα/2 is the 100(1−α/2)th percentile of the Gaussian distribution. A sample size greater than

or equal to m0 will ensure power of 1−β against the specific alternative. The quantity
(
τ2
g + 2σ2

g

)

is the population variation in the differences between tumor and normal expression in individuals
(i.e., between the two channels on the slides), and some estimate of the variance can be used in the
calculation.

4 Sample Size for Optimal Unpaired Samples Design (no refer-
ence)

Setting k = 0 results in var
(
ĜV g1 − ĜV g2

)
=

τ2
g1+τ2

g2+2σ2
g

m . Let α be the size of the test, i.e.,
the probability of a type I error; and 1 − β be the desired power of the test against the specific
alternative |GVg1 −GVg2| ≥ δ. Then the usual computation produces the sample size formula

m0 =
[
zα/2 + zβ

δ

]2 (
τ2
g1 + τ2

g2 + 2σ2
g

)
.

A sample size greater than or equal to m0 will ensure power of 1−β against the specific alternative.
The quantity

(
τ2
g1 + τ2

g2 + 2σ2
g

)
is the population variation in the log-ratios, and some estimate of

the variance can be used in the calculation.

5 Sample Size for Optimal Reference Design When Comparison
With Reference is Primary Goal

For a size α test of equality of mean expression, the sample size required to assure power 1 − β
against the alternative that the means differ by δ is:

m0 =
[
zα/2 + zβ

δ

]2 (
τ2
g + 2σ2

g

)
.

Here τ2
g + 2σ2

g is the variance in the log ratios, and some estimate of the variance can be used in
the calculation.
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6 Further Discussion

There are some drawbacks to running half the samples forward and the other half backward.
Analysis software is required that performs the analysis of variance to estimate the gene-specific
dye biases and adjust the variety by gene effects accordingly. This adjustment would usually not be
necessary if all samples were run forward, or all run both forward and backward and the average of
the log-ratios were entered. Also, if one wishes to run a cluster analysis on a set of paired samples,
then one will need to adjust for dye bias before doing the cluster analysis; otherwise, dye bias may
create erroneous clusters. We have noticed with one set of paired samples that there was some
separation between the forward arrays and backward arrays in the multi-dimensional scaling plot
when no dye adjustment was made. Adjusting for gene-specific dye bias using the model-based
methods discussed in this paper appeared to correct this problem. Finally, if one has only a small
number of samples available, and enough RNA to run each sample several times, then running
multiple arrays for each sample will always be preferable to running a single array for each sample.

In the unpaired case, we have represented the distribution of the log expression level for each gene
among individuals of the same variety (or phenotype) as normally distributed. In the paired case, we
have made a similar distributional assumption about the differences between gene expression in the
pairs. In both cases, each gene is allowed to have it’s own level of variation within the population,
represented by the τ2

g parameters, and we have made no assumption about the correlation structure
among genes. We believe normality on the log scale within phenotype to be a reasonable assumption
that will be approximately true for most genes, but one that may be violated for some genes. But
without some assumption on the distribution the designs cannot be compared. It seems better to
base design decisions on assumptions which are likely to be approximately true for most genes than
allow concern over a few potential rogue genes to undermine the microarray design process.

One might question our characterization of dye bias. We have represented gene specific dye
effects by the addition of a GD interaction term to the linear model. The GD interaction is the
same for all arrays and for all samples. We assume that this type of dye effect is caused by specific
characteristics of the RNA transcripts which facilitate or impede the incorporation of one of the
dyes (i.e., dUTP fluorescently labelled with bulky dye adducts) during reverse transcription into
cDNA. One might be concerned that this characterization of the dye by gene interaction is incorrect,
and that in fact the interaction effect varies among samples. If one is concerned about a GDP
(or GDF ) interaction, one can partially test for the presence of this effect by performing a Tukey
single degree of freedom test for additivity (Scheffé, 1999) on those sample pairs that have been
run both forward and backward. This test rejects if there is evidence against the assumption of no
interaction, in our case the assumption GDP ≡ 0 for this gene. The power of the test is not known
and it only tests for a particular form of interaction, but may still be informative. The statistical
significance of the findings can then be checked with a permutation test. We ran the test on paired
cancer data (unpublished data) with 5759 genes, where 18 arrays had been run both forward and
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reverse, then performed a permutation test. The sample data tended to have a larger proportion
of genes with significant GDP interactions than the data with labels randomly permuted. A third
of the genes had more significant GDP interaction F-test statistics than all 200 permutations. But
these effects tended to be very small. Out of more than 100,000 estimated GDP interactions, only
10 reflected a fold change of 2 or more. Also, 9 of the 10 with large fold change were associated with
the same sample, suggesting that some particular technical issues with the sample could explain
the larger effects. The median fold change was 1.01. Since small fold changes, even if statistically
significant, are often considered to be artifacts of the microarray technology, these small interaction
effects should not be a major concern.

For paired samples, including GV P in the model produces a loss of efficiency in the contrast
of interest, ĜV g1 − ĜV g0. This can be seen by drawing an analogy with two-stage sampling
(Cochran, 1977; Sadooghi-Alvandi, 1986), or by direct calculation. Under the assumption that the
GV P effects are normally distributed, the efficiency of the contrast for the balanced model with no
repeated samples (right column of Table G) relative to the GV P -model with k repeated samples is

1 + 2kτ2
g

m(τ2
g +2σ2

g)
. Removing GV P terms from the paired model effectively lumps these terms in with

error. In our calculations, we assume that the distribution of GV P , the effect of the cancer on
log-expression level of a particular gene in the population, is approximately normally distributed
with variance τ2

g . Validity of F-tests for the no-GV P -models are based on the same assumption.
The advantage of the GV P -model is that by estimating this term explicitly, no assumption about
its distribution need be made. But this is not as great an advantage as it may sound because
in place of the normality assumption, one is forced to introduce constraints on the GV P terms
to make the parameters estimable, and the constraints do not appear more reasonable than the
normality assumption. Moreover, the resulting GV estimate in the GV P model is calculated by
averaging the individual array contrasts, and so will be sensitive to outliers and skewness in the
GV P effects.

Appendix

A Paired Design Calculation With GV P

ANOVA models are highly over-parameterized and require constraints to ensure parameters are
well defined. The constraint equations are

∑

d

GDgd = 0

GAga + GAg(n+a) = 0, a = 1, 2, ..., k
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n∑

a=k+1

GAga = 0

∑
v

GVgv = 0

k∑

p=1

2GPgp +
n∑

p=k+1

GPgp = 0

k∑

p=1

2GV Pgvp +
n∑

p=k+1

GV Pgvp = 0, v = 1, 2

∑
v

GV Pgvp = 0, p = 1, 2, ..., n

Note that the first constraint allows us to correct for the gene-specific dye effects explicitly for
each gene. Spot effects GA will appear in the expected value of the estimator of GV unless the
GV estimate is based on within array contrasts between the red and green channels. Therefore,
unbiased estimates will have the form

ĜV g1 − ĜV g0 = Wf

k∑

a=1

(rga11a − rga00a) +

Wb

n+k∑

a=n+1

(rga01(a−n) − rga10(a−n)) +

Wu

k+(n−k)/2∑

a=k+1

(rga11a − rga00a) +

Wu

n∑

a=k+1+(n−k)/2

(rga01a − rga10a)

= Wf

k∑

a=1

(GDg1 −GDg0 + GVg1 −GVg0 + GV Pg1a −GV Pg0a + ...) +

Wb

n+k∑

a=n+1

(GDg0 −GDg1 + GVg1 −GVg0 + GV Pg1(a−n) −GV Pg0(a−n) + ...) +

Wu

k+(n−k)/2∑

a=k+1

(GDg1 −GDg0 + GVg1 −GVg0 + GV Pg1a −GV Pg0a + ...) +
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Wu

n∑

a=k+1+(n−k)/2

(GDg0 −GDg1 + GVg1 −GVg0 + GV Pg1a −GV Pg0a + ...)

The ... indicate the error terms, which are omitted. The W ′s must satisfy the constraints

• In order to ensure we are estimating GVg1 − GVg0, and not some constant multiple of the
contrast, we must have kWf + kWb + (n− k)Wu = 1.

• Wf = Wb ensures that the no dye effects appear in the expected value.

• Wf = Wb = Wu combined with the constraints ensures that the GV P effects will cancel out
of the expectation.

The unique solution is Wu = Wb = Wf = 1
n+k , resulting in the variance

var
(
ĜV g1 − ĜV g0

)
=

2σ2
g

n + k
.

For fixed m = n + k, the variance is constant in k.

B Paired Design Calculation Without GV P

Spot effects GA will appear in the expected value of the estimator of GV unless the GV estimate is
based on within array contrasts between the red and green channels. Therefore, unbiased estimates
will have the form

ĜV g1 − ĜV g0 = Wf

k∑

a=1

(rga11a − rga00a) +

Wb

n+k∑

a=n+1

(rga01(a−n) − rga10(a−n)) +

Wu

k+(n−k)/2∑

a=k+1

(rga11a − rga00a) +

Wu

n∑

a=k+1+(n−k)/2

(rga01a − rga10a)
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= Wf

k∑

a=1

(GDg1 −GDg0 + GVg1 −GVg0 + GV Pg1a −GV Pg0a + ...) +

Wb

n+k∑

a=n+1

(GDg0 −GDg1 + GVg1 −GVg0 + GV Pg1(n−a) −GV Pg0(n−a) + ...) +

Wu

k+(n−k)/2∑

a=k+1

(GDg1 −GDg0 + GVg1 −GVg0 + GV Pg1a −GV Pg0a + ...) +

Wu

n∑

a=k+1+(n−k)/2

(GDg0 −GDg1 + GVg1 −GVg0 + GV Pg1a −GV Pg0a + ...)

The ... indicate the error terms, which are omitted. In order to ensure we are estimating
GVg1−GVg0, and not some constant multiple of the contrast, we must have kWf +kWb+(n−k)Wu =
1. In order for an estimate of the variety by gene interaction to be unbiased, we must have Wf = Wb

so that the dye effects will cancel out. The GV P are random effects with mean zero, and so will
cancel out when we take the expectation. Then we need to minimize the variance function:

V ar
(
ĜV g1 − ĜV g0

)
= k(Wf + Wb)2τ2

g + 2kW 2
f σ2

g + 2kW 2
b σ2

g + (n− k)W 2
u (τ2

g + 2σ2
g)

subject to the constraints. A calculation gives

Wf =
1
2

τ2
g + 2σ2

g

(n− k)(τ2
g + σ2

g) + k(τ2
g + 2σ2

g)

Wu =
τ2
g + σ2

g

(n− k)(τ2
g + σ2

g) + k(τ2
g + 2σ2

g)

Now let a = τ2
g +2σ2

g , b = τ2
g +σ2

g , and c = (n−k)(τ2
g +σ2

g)+k(τ2
g +2σ2

g). Then W 2
f = W 2

b = a2

4c2
,

W 2
u = b2

c2
and (Wf + Wb)2 = a2

c2
. Then, it can be shown that

var
(
ĜV 1g − ĜV 0g

)
=

ab

ka + (n− k)b

=

(
τ2
g + 2σ2

g

) (
τ2
g + σ2

g

)

(m− k)τ2
g + mσ2

g
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We want to pick k to maximize this denominator, so pick k = 0.

C Two Varieties, Unpaired Samples Calculations

Spot effects GA will appear in the expected value of the estimator of GV unless the GV estimate is
based on within array contrasts between the red and green channels. Therefore, unbiased estimates
of GVg2 −GVg1 will be based on intra-array comparisons, and will therefore take the form

ĜV g2 − ĜV g1 = Wf

k∑

a=1

(
rga11a − rga02(n+a)

)
+ Wu

n∑

a=k+1

(
rgada1a − rgada2(n+a)

)
+

Wb

k+n∑

a=n+1

(
rga01(a−n) − rga12(n+a−n)

)
(1)

Each term in the sums in Equation 1 is independent and has variance τ2
g1 + τ2

g2 + 2σ2
g . This results

in the variance function

var
[
ĜV g2 − ĜV g1

]
=

{
k (Wf + Wb)

2 + (n− k)W 2
u

} (
τ2
1g + τ2

2g + 2σ2
g

)

The constraints in this case are

Constraint 1: kWf + kWb + (n − k)Wu = 1 ensures that we are estimating the variety contrast
and not some multiple of the contrast.

Constraint 2: 2Wu = Wf + Wb ensures that the sample effects cancel out of the variety estimate
under the usual constraint

∑n
f=1 nfGFgf =

∑2n
f=n+1 nfGFgf = 0.

Constraint 3: Wf = Wb ensures that the dye effects cancel out of the variety contrast.

The unique solution to this maximization problem is Wf = Wb = Wu = 1
n+k , resulting in the

variance function

var
[
ĜV g2 − ĜV g1

]
=

{
4k

(n + k)2
+

n− k

(n + k)2

} (
τ2
1g + τ2

2g + 2σ2
g

)

=
{

n + 3k

(n + k)2

} (
τ2
1g + τ2

2g + 2σ2
g

)

=
m + 2k

m2

(
τ2
1g + τ2

2g + 2σ2
g

)
.

For fixed m = nn + k, the variance is minimized when k = 0.
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D Reference Design Calculations 1

Spot effects GA will appear in the expected value of the estimator of GV unless the GV estimate is
based on within array contrasts between the red and green channels. Therefore, unbiased estimates
of GV1g −GV0g will be based on intra-array comparisons, and will therefore take the form

ĜV 1g − ĜV 0g = Wf

k∑

a=1

(rga11a − rga000) + Wu

n∑

a=k+1

(rga11a − rga000) +

Wb

k+n∑

a=n+1

(
rga01(a−n) − rga100

)
(2)

The constants Wf , Wu, and Wb are to be selected to minimize the variance of the contrast subject
to three constraints.

Constraint 1: 2Wu = Wb +Wf assures that no sample effects appear in the expected value of the
variety contrast estimate; so that the estimate is unbiased for all values of the sample effects.
This is true because of the usual constraint on the sample effects 0 =

∑
f∈V1

nfGFgf where
nf is the number of times sample f appears on an array.

Constraint 2: (n− k)Wu = k (Wb −Wf ) assures that no dye effects appear in the expected value
of the variety contrast estimate.

Constraint 3: kWf + (n− k)Wu + kWb = 1 assures that we are estimating the contrast, and not
some multiple of the contrast.

This gives three constraint equations for three unknowns. The unique solution is:

Wf =
3k − n

2k(k + n)
; Wb =

1
2k

; Wu =
1

k + n
.

Note that var [rga11a − rga000] = τ2
g +2σ2

g , and that var
[
Wf (rga11a − rga000) + Wb

(
rga01(a−n) − rga100

)]
=

(Wf + Wb)
2 4τ2

g +
(
W 2

f + W 2
b

)
4σ2

g . Therefore, the contrast variance is:

var
[
ĜV g1 − ĜV g0

]
=

[
k (Wf + Wb)

2 + (n− k)W 2
u

]
τ2
g +

[
2kW 2

f + 2(n− k)W 2
u + 2kW 2

b

]
σ2

g (3)

=
n + 3k

(n + k)2
τ2
g +

n2 + 3k2

k(n + k)2
σ2

g
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If we fix the number of arrays m = n + k, then the k which minimizes the variance is

k = max


1,

mσg√
2τ2

g + 4σ2
g


 .

E Reference Design Calculations 2

In this case, the “treatments” are balanced with respect to the dyes, so that each appears half the
time with each dye tag. As a result, the dye effects will automatically cancel out of the variety
contrast estimate in Equation 2 as long as Wf = Wb, but constraint 2 of the last Appendix no
longer need be satisfied. The other two constraints still need to be satisfied. So we add this new
constraint, Wf = Wb, to the constraint equations and solve.

We need to minimize Equation 3 subject to constraints 1 and 3 of the previous Appendix, and
the new constraint Wf = Wb. The unique solution Wf = Wb = Wu = 1

n+k .

Plugging these into the contrast variance Equation 3 gives

var
[
ĜV g1 − ĜV g0

]
=

τ2
g + 2σ2

g

m
+

2kτ2

m2
.

The variance will be minimized when k = 0, i.e., when each array contains an unique sample.

F Proof of the Loss of Efficiency When Samples Are Replicated
in a Paired Design

Assume there are n individuals randomly selected from some population of interest, and m pairs
of samples from each individual. Also assume that both members from each pair are to be placed
together on each array, and we wish to estimate the average difference between the pairs for this
population of individuals. We wish to prove that if there is no dye bias, then replicating individuals
over the arrays decreases the efficiency of the population estimates.

Our model is

yij = µ + si + εij

where µ is the population mean we wish to estimate, si is the effect of individual i, and εij is the
experimental error. Here, i = 1, ..., n indexes the individuals and j = 1, ...,m indexes the different
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replicates for each individual. Assume si is normal with mean 0 and variance τ2, and εij is normal
with mean zero and variance σ2, and that all of these are independent. Then τ2 represents biological
variation and σ2 represents experimental variation. The total number of observations is nm. The
variance of the estimated population average log-ratio is

var


 1

nm

n∑

i=1

m∑

j=1

yij


 = var

(
1
n

n∑

i=1

ȳi·

)

=
1
n2

n∑

i=1

var (ȳi·)

=
1
n

(
τ2 +

σ2

m

)

=
τ2

n
+

σ2

nm

The number of arrays is a = nm. For fixed a, the variance is mτ2

a + σ2

a . The variance is an
increasing function of m, so pick m = 1 to minimize the variance.

Therefore, we have shown that the variance of the estimated population mean is minimized
when no samples are replicated, and increases with the number of replicates. Therefore, the most
efficient design is one that uses a single pair of samples from each individual.

G Tables
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Source of Degrees of Freedom Degrees of Freedom Degrees of Freedom
Variation GP and GV P included GP only included GP and GV P omitted
G 1 1 1
GA(GP ) n n n+k-1
GD 1 1 1
GV 1 1 1
GP n-1 n-1 0
GV P n-1 0 0
Error k-1 a n+k-2 b n+k-2
Total 2 (n+k) 2 (n+k) 2 (n+k)

aGP and GA effects for arrays k+1 to n are completely confounded; hence the predictors are linearly dependent,
and the dimension of the predictor space is 3n + 1− (n− k) = 2n + k + 1 leaving k − 1 df for error.

bIn this case, the dimension of the predictor space is 2n + 2− (n− k) = n + k + 2 leaving n + k− 2 degrees of
freedom for error.

Table A: Analysis of Variance Tables for Paired Design. GA(GP ) notation indicates that the GA
gene by array (spot) effects are nested within the GP gene by participant effects.

Source of Degrees of Freedom Degrees of Freedom
Variation (with GF ) (without GF )
G 1 1
GA n+k-1 n+k-1
GD 1 1
GV 1 1
GF n-1 0
Error k-1 n+k-2
Total 2 (n+k) 2 (n+k)

Table B: Analysis of Variance Table for Reference Design


